
User manual for CalcABS

Xiaoheng Cheng and Michael DeGiorgio

November, 2017

Contents

1 Introduction 2

2 Operation 2
2.1 Checking format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Fixing the topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Help page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Input format 3
3.1 Input file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Providing column indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Output format 4

5 Examples 5
5.1 Input file without chromosome name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2 Input file with chromosome name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



1 Introduction

CalcABS is a python script for calculating the ancestral branch statistic (ABS; Cheng et al. (2017), Sub-
mitted) of a genomic region, to summarize the internal branch length of an unrooted four-population tree.

If you experience any issues when running the script, then please contact Xiaoheng Cheng at xh.cheng@psu.edu
for further help.

Please cite it as:

X. Cheng, C. Xu, M. DeGiorgio. Fast and robust detection of ancestral selective sweeps. Mol. Ecol.. 2017.
doi: 10.1111/mec.14416.

2 Operation

We distribute CalcABS in compressed (tar.gz) format. In addition to the CalcABS script, we also included
the user manual and example data. The script included is designed to perform on a UNIX system. To
unpack CalcABS from the command line, go to the directory where it is stored, and enter

tar -xzvf CalcABS.tar.gz

cd CalcABS/

The first command will decompress the file and release the content into folder CalcABS in the current direc-
tory. The second command will lead the user to the CalcABS directory, which contains the script, manual,
and test directory.

To run CalcABS.py, format the dash commands and their arguments in a single line as

python CalcABS.py -i <input file> -o <output file> -n <c,p,x> -w <window size>

-s <step size> [--check] [--fix <pair>]

In this command line, <input file> and <output file> are the file names (including their paths) to input
and output files, respectively. They must follow their respective dash commands, -i and -o. The arguments
of <window size>, following -w, and <step>, following -s, are the lengths of the sliding window and the step
it takes while sliding through the data, respectively. Both numbers should be the length in the number of
nucleotides (nt). When choosing window and step sizes, the user should consider the density of polymorphic
sites in the input data. More discussion on optimizing window sizes can be found in ? (Submitted).

The <c,p,x> argument is for column indices and must follow -n. For this argument, the user should provide
the column indices of chromosome name (denoted as c), locus positions (p), and the allele count of the first
population (x), separated by commas (i.e., c,p,x, with no space). If the file does not contain chromosome
name, or the user does not need it in the output, then leave out the first index c, but still keep the first
comma (i.e., ,p,x).

2.1 Checking format

The command argument --check is optional. When the user wishes to check if the input file has the correct
format before scanning, provide input file information and the column indices, and include --check in the
command.

python CalcABS.py -i <input file> -n <c,p,x> --check

2



2.2 Fixing the topology

Calculating ABS does not need to assume a certain topology relating the four populations. However, if
users need to fix the topology, then --fix command can be used. Following this command, the user should
provide the pair of target populations in the input data. That is, if the four populations listed in the input
file are numbered 1, 2, 3 and 4, respectively from left to right, then the target sister populations can be
designated by the pair of numbers representing these populations, being “12”, “13”, “14”, “23”, “24”, or “34”.

python CalcABS.py -i <input file> -o <output file> -n <c,p,x> -w <window size>

-s <step size> --fix <pair>

2.3 Help page

The user can also use -h or --help command to see instructions for each dash command.

python CalcABS.py -h

python CalcABS.py --help

Either of the two commands should print the following output in the command window.

Usage: CalcABS.py -i <input file> -o <output file> -n <c,p,x> -w <window size>

-s <step size> [--check] [--fix <pair>]

Options:

-h, --help show this help message and exit

-i INFILE, --input=INFILE

Path and name of your input file.

-o OUTFILE, --output=OUTFILE

Path and name of your output file.

-n INDEX, --indices=INDEX

Index numbers for the columns of chromosome name c,

locus positions p, and allele counts of the first

population x, respectively. Format of this argument

should be ‘c,p,x’ or ‘,p,x’, without space.

-w WIN, --window=WIN Length of the sliding window, in the number of

nucleotides (nt), for ABS scan.

-s STEP, --step=STEP Length of each step the sliding window takes, in the

number of nucleotides (nt), while scanning the data

with ABS.

--check Option to check the file format.

--fix=PAIR Option to fix the topology formed by population 1, 2,

3 and 4. Argument can be ‘12’, ‘13’, ‘14’, ‘23’, ‘24’,

or ‘34’, identifying the pair of target populations.

3 Input format

ABS calculation requires allele count data from all four populations at each of their polymorphic sites. To
present such data, input files must be tab-delimited plain text files that contain information on no more
than one chromosome.

Input and output files are recommended to be presented in absolute paths. If you are unsure about their
absolute paths, then copy the script CalcABS.py to the same folder where the data are located, and follow
the instructions in Section 2 or 5. If the path of the output file is not provided, then by default the output
file will be written to the same path as the script.

3



If the user has used the input file in other operating environment previously, then it is advised to use the
following command to make sure this file is readable in a UNIX environment:

dos2unix <file>

3.1 Input file format

In the input file, the user must provide, for each of the four populations, the number of a certain allele
(denoted as x) and the total number of alleles sampled (denoted as n). Positions of loci must be sorted in
ascending order. All the loci included in the file should be polymorphic among the populations, meaning
they can either be segregating sites within populations, or fixed differences among different populations.
When parsing data for CalcABS, the users must only consider bi-allelic loci. For each locus, the chosen
allele, whose count is represented by x, could be the number of reference alleles, alternate alleles, ancestral
alleles, derived alleles, major alleles, or minor alleles at this position. A locus should be discarded if the
allele count data are completely absent in any population.

The input file must have a header as its first line, but users can customize the name of each column. Addi-
tional information about each locus, for example their IDs, can also be kept in input files, but the file must
at least have the following columns.

position x1 n1 x2 n2 x3 n3 x4 n4

where position shows the physical position of the locus, and xk and nk denote the counts of a certain allele
and the total number of observed alleles, respectively, at this position in population k. As in the example
above, x1, x2, x3, and x4 could be the counts of a certain allele at the given position in population 1, 2, 3,
and 4, respectively. Note that additional information can be inserted before position, between position

and x1, and after n4, but cannot be placed between the columns of allele counts. For each population,
denoted as population k, its total sample size nk must immediately follow its allele count xk.

3.2 Providing column indices

Users should provide column indices for chromosome name (denoted as c), locus positions (denoted as p),
and x1 (denoted as x) to inform CalcABS of the structure of the list. Indexing begins with one, and the
indices must be integers, separated by commas (i.e., c,p,x).

The number c, the column index for the chromosome name, can be left blank if the user does not have such
column in the input, or does not need it in the output. For example, for the header provided in Section 5.2,
its corresponding <c,p,x> argument would be 1,2,3 or ,2,3. Note that the inclusion of chromosome name
is solely for the convenience or preference of the user. All the loci included in the file should reside on the
same chromosome, such that their positions are comparable. In other words, when included, it should only
have one value throughout each input file.

When the input file and column indices are provided, the user can use --check command (see Section 2.1)
to check if they are formated correctly.

4 Output format

CalcABS writes output to the path and file name provided in the -o <output file> argument. Dependent
on whether the column index of the chromosome name is given, the output can be in two formats: with the
chromosome name or without. When the input file contains the chromosome name and the user indicates
its column index in the -n <c,p,x> argument, the output format is

4



chr midPos score numSites topology

When the column index of chromosome name is not given, the output format is

midPos score numSites topology

In these tables, chr denotes the chromosome name, midPos is the center position of the sliding window,
score is the ABS score of this window, numSites is the number of sites included in this window, and
topology indicates the four-population tree topology suggested by the data in this window. The value for
topology will be “12|34”, “13|24”, or “14|23”, with the numbers representing the order that the four popu-
lations are listed in the input file, and “|” denotes the internal branch separating the two pairs of populations.

5 Examples

To familiarize the users with CalcABS, we include example input files in the subfolder test. Both examples
are the parsed allele count data for a simulated 1 million base (or 1 Mb) sequence. A strongly advantageous
allele (selective coefficient s = 0.1) was introduced at the center of this sequence on a single haplotype
before the pair of sister populations, 1 and 2, diverged. We sampled 50 haplotypes from each population,
and denote the counts of derived alleles in each population as x, and the total numbers of alleles observed as n.

5.1 Input file without chromosome name

In the test folder, you should see the file ex1 input.txt that has the following layout.

position x1 n1 x2 n2 x3 n3 x4 n4

24.0 0 50 0 50 0 50 2 50

119.0 1 50 0 50 0 50 0 50

402.0 0 50 0 50 1 50 0 50

608.0 26 50 19 50 37 50 28 50

828.0 0 50 0 50 5 50 11 50

1064.0 0 50 0 50 2 50 0 50

1293.0 0 50 0 50 0 50 2 50

...

Follow instructions in Section 2 to unpack the CalcABS.tar.gz file and navigate to the CalcABS folder. Use
the following command to scan this file with a window size of 20,000 bases (or 20 kb) at 1 kb step. This
command will also write the output to file test/ex1 out.txt:

python CalcABS.py -i test/ex1 input.txt -n ,1,2 -o test/ex1 out.txt -w 2e4 -s 1000

Once the script finishes running, you will find the output file ex1 out.txt in the test folder. The file should
begin with

midPos score numSites topology

10000 0.238267230009 192 12|34

11000 0.239424139258 199 12|34

12000 0.237528418872 206 12|34

13000 0.228974064723 206 12|34

14000 0.208281589288 216 12|34

15000 0.18058099615 220 12|34

...

5



We can also fix the topology so that populations 1 and 2, the target population pair, are always on the same
side of their ancestral branch. The following command can be used, and its output should be identical to
the previous one.

python CalcABS.py -i test/ex1 input.txt -n ,1,2 -o test/ex1 fix.txt -w 2e4 -s 1000

--fix 12

5.2 Input file with chromosome name

In addition to all the data in example 1, ex2 input.txt contains a chromosome name for this sequence.
Because this is a simulated sequence, we name the chromosome by the order it was generated. This file
begins with:

chr position x1 n1 x2 n2 x3 n3 x4 n4

12 24 0 50 0 50 0 50 2 50

12 119 1 50 0 50 0 50 0 50

12 402 0 50 0 50 1 50 0 50

12 608 26 50 19 50 37 50 28 50

12 828 0 50 0 50 5 50 11 50

12 1064 0 50 0 50 2 50 0 50

12 1293 0 50 0 50 0 50 2 50

...

For this input file, the user can use the following command to generate an output file ex2 out.txt with a
chromosome name.

python CalcABS.py -i test/ex2 input.txt -n 1,2,3 -o test/ex2 out.txt -w 2e4 -s 1000

The output file should begin with:

chr midPos score numSites topology

12 10000 0.238267230009 192 12|34

12 11000 0.239424139258 199 12|34

12 12000 0.237528418872 206 12|34

12 13000 0.228974064723 206 12|34

12 14000 0.208281589288 216 12|34

12 15000 0.18058099615 220 12|34

...

If the user does not need the chr column in the output file, then by leaving blank the corresponding num-
ber in the <c,p,x> argument, the following command can be used to generate an output file identical to
ex1 out.txt:

python CalcABS.py -i test/ex2 input.txt -n ,2,3 -o test/ex2 out.txt -w 2e4 -s 1000

To fix the topology so that populations 1 and 2 are always on the same side of their ancestral branch, the
user can add --fix 12 to the command, as described in Section 5.1.

References

X. Cheng, C. Xu, and M. DeGiorgio. Fast and robust detection of ancestral selective sweeps. Mol. Ecol.,
2017. doi: 10.1111/mec.14416.

6


