
User manual for LASSI

Alexandre M. Harris and Michael DeGiorgio

June 20, 2019

Contents

1 Introduction 2

2 Operation 2

2.1 Running LASSI from the command line . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Initial scan of the data to generate frequency spectra and count spectra . . . 3

2.1.2 Obtaining the mean neutral spectrum . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Running the final scan to compute the T statistic . . . . . . . . . . . . . . . . 5

2.2 Converting VCF files to LASSI-compatible format with vcf2ssx . . . . . . . . . . . . 6

3 Default input file format 7

4 Output format 8

5 Examples 9

1



1 Introduction

Welcome to LASSI, our Likelihood-based Approach for Selective Sweep Inference. LASSI is a
Python program for identifying selective sweeps, as well as classifying them as hard or soft, from
multilocus polymorphism data. Input data for your study population can be either phased as
haplotypes or unphased as multilocus genotypes (MLGs), and LASSI makes no distinction between
these as long as the proper formatting is followed (see Section 3:Default input file format). Selective
sweeps are detected from an elevated value of the T -statistic, which is the log composite likelihood
ratio of a sweep model compared to the genome-wide background (taken as a model of neutrality),
and indicates the likelihood that a genomic region fits a sweep model. For regions with elevated
values of T , sweeps are inferred to be hard or soft from the model parameter m. See Harris and
DeGiorgio [2019b] for a complete explanation of the theory underlying LASSI.

Note that you will likely need to convert the format of your data for compatibility with LASSI.
For simplicity between platforms, we reuse the input format of our previous software, SS-X12 (see
Harris and DeGiorgio [2019a] for a description of this method). To assist in converting your data,
we provide the Python script vcf2ssx, which converts VCF files to a format compatible with
both LASSI and SS-X12. Thus, if you have previously used SS-X12 and converted your VCF files
with vcf2ssx, then you are already set to begin analysis with LASSI. We describe the operation
of vcf2ssx in Section 2.2: Converting VCF files to LASSI-compatible format with vcf2ssx, and
provide examples of properly-formatted files in Section 5:Examples.

Please contact Alex Harris (amh522@psu.edu) if you encounter any issues in your use of these
programs. As necessary, please also include an example converted data file (such as the first 1000
SNPs of your format-converted data).

If you use either LASSI or vcf2ssx software, then please cite it as

A M Harris and M DeGiorgio (2019). A likelihood approach for uncovering selective sweep
signatures from haplotype data. bioRxiv.

2 Operation

LASSI and vcf2ssx are meant for use on UNIX systems and are formatted for Python 2.7 specif-
ically. We do not guarantee compatibility with Python 3+. We do not provide support for errors
arising due to system incompatibilities, but if you do encounter an error, then please first check
your invoked version of Python. We distribute our software in compressed (.tar.gz) format, and
include the LASSI pipeline (five Python scripts in total), vcf2ssx, this manual, and example data
with output, as part of your download. To unpack the LASSI program directory from the command
line, enter

tar -xzvf LASSI program.tar.gz

cd ./LASSI program

2

mailto:amh522@psu.edu


These commands will create the directory LASSI program within the current directory, and switch
the user to LASSI program. For simplicity, we recommend that all input dataset files be in the
same directory as the LASSI scripts, but this is not required. Additionally, output files are written
to the local directory.

2.1 Running LASSI from the command line

The operation of LASSI to identify and classify selective sweeps is performed in several steps as
part of a pipeline, though users will only need to invoke the central script, LASSI iterator.py,
which itself calls the other four scripts. The pipeline is composed of three basic steps, which we
outline here and describe in detail in the next sections (2.1.1-2.1.3).

First, the sample is scanned via sliding window to extract the haplotype (or MLG) frequency
spectrum at each genomic position to be analyzed (run option initial, Section 2.1.1). The counts
for each haplotype (or MLG) are also recorded. The number of genomic positions in the analysis is a
function of the window size and the distance by which the window advances with each step (the step
size). Whole and truncated spectra of frequencies and counts are produced in each scan, comprising
four spectra in all. Whole spectra contain the frequencies of all classes within the analysis window,
whereas truncated spectra are cut off at a user-specified number K of most-frequent haplotypes.
We have generally found that a truncation of K = 20 provides accurate results when detecting
selective sweeps.

Following the initial scan, a mean neutral background spectrum is generated from the haplotype
(or MLG) frequency spectra of all the analysis windows, providing our null model. This spectrum
is required to compute the likelihood function that quantifies candidate selective sweeps.

Finally, using the neutral spectrum for the dataset and the spectrum of counts for each analysis
window obtained during the initial scan, a T -statistic is assigned for each window in the final step.
Also outputted for each window is its genomic coordinate (central SNP in the window), the inferred
number of sweeping haplotypes m, the value of ε used in the model, and the value of the smallest
haplotype class in the neutral spectrum pK (see Harris and DeGiorgio [2019b], Theory).

All scripts provided with the software download (LASSI iterator.py,
LASSI spectrum and Kspectrum.py, LASSI Kspectrum ONLY.py, LASSI average Kspect.py,
and LASSI scan.py) must be present within your working directory for the LASSI pipeline to
function properly. Additionally, we recommend that unrelated output files be moved to separate
destination directories to prevent new results from appending to existing files across analyses.

2.1.1 Initial scan of the data to generate frequency spectra and count spectra

Generating the T statistic to identify selective sweeps fundamentally depends on obtaining and
leveraging frequency and count spectra for the dataset under analysis. To do this, use the initial

option as the first argument for LASSI iterator.py and wait for the All done message to appear
on the command line. LASSI will also report the size of the final analysis window, which is unlikely
to contain the desired number of SNPs (users can then decide whether to use this window in their
analysis). The run time of the initial scan depends on the choice of window and step sizes. Choosing

3



smaller windows will result in faster per-window computations, while choosing smaller step sizes
will result in a greater overall number of computations performed.

The initial step will output spectra—full counts, truncated counts, full frequency, and truncated
frequency—for each analysis window to chromosome-specific .txt files, as well as an allreps

file (also .txt) that contains all of the truncated frequency spectra across all chromosomes and a
window centers file (.txt). The allreps file will be used in the next step (2.1.2) to generate
the neutral background spectrum (the total neutral file), while the window centers file allows
LASSI to assign a genomic coordinate to each T statistic. To proceed, enter the following into the
command line:

python LASSI iterator.py initial <chromosome number> <truncation>

<unique ID> <file name components> <study population> <headfile>

<window size> <step size> <to allreps>

There may be instances in which new truncations for spectra are desired. For such situations,
we provide an alternate script to the one above, which takes the existing whole spectra from a
previous scan (such as the example scan invoked above) and truncates them differently. This does
not change the window or step sizes, allowing for reuse of the window centers file. To create a
new set of truncated spectra, invoke:

python LASSI iterator.py rescan <chromosome number> <truncation>

<unique ID> <file name components> <study population> <headfile>

<window size> <step size> <to allreps>

Ten arguments in total are specified for the above commands, including the command option

(initial or rescan) itself:

1. option, which is constrained to be either initial or rescan; no other choice will work
for generating spectra, and rescan can only be used on spectra previously generated with
initial

2. chromosome number, integer or string identifying the contig of your data to be scanned (such
as 1, X, 2L, etc.)

3. truncation, positive integer indicating the number of classes to be included in truncated
spectra; for example, choosing 20 means that only the top 20 frequencies/counts will be
included (these will be weighted values)

4. unique ID, a string that defines what the output file will be called, such as my scan 122519;
output prints to local directory into a .txt file

5. file name components, comma-separated strings comprising the name of the input file before
and after the contig identification; this makes it convenient to parallelize scans when a dataset
consists of, for example, multiple chromosomes whose data are stored within similarly named
files; format this as file name before ID,file name after ID

6. study population, string indicating which population to scan, formatted exactly as in the
headfile

4



7. headfile, the name of the file containing the population assignment for each individual in
the input file

8. window size, positive integer corresponding to the number of SNPs to be included within
the analysis window

9. step size, positive integer corresponding to the step size, in SNPs, that the analysis window
moves along the chromosome after each computation; typically 1/10 the window size

10. to allreps, either yes or no, indicating whether the truncated frequency spectrum of each
window should additionally output to an allreps file which will be used in the next step
to create the neutral background frequency spectrum (total neutral file); this should gen-
erally be yes because the neutral background frequency spectrum needs to be computed for
each parameter set

2.1.2 Obtaining the mean neutral spectrum

Once the allreps file containing the truncated frequency spectra for each window has been gener-
ated across all chromosomes, it is used to generate a neutral background spectrum (total neutral

file), which is the mean spectrum for the entire chromosome. To obtain a master spectrum
for the entire genome across chromosomes, you will need to take the weighted average of each
total neutral spectrum generated for each chromosome.

Using neutavg as the option argument to generate a total neutral file is straightforward, re-
taining five arguments of initial and rescan, with one subsequent argument:

python LASSI iterator.py neutavg <chromosome number> <truncation>

<unique ID><file name components> <study population> <allreps lines>

The allreps lines argument is an integer indicating the total number of lines in the allreps

file. You will need to use the wc -l command from the terminal for your UNIX system to count
the number of lines in the allreps file. The number of lines of an allreps file is equivalent to
the total number of windows scanned across all chromosomes.

2.1.3 Running the final scan to compute the T statistic

The final step in the LASSI pipeline is to assign a T statistic (as well as the number of sweeping
haplotypes/MLGs m̂, and non-sweeping haplotype parameter ε̂) to each analysis window defined
in the initial scan or rescan. This is achieved by computing the likelihood of neutrality, using
the neutral background spectrum, and the likelihood of a sweep, using a distortion of the neutral
background spectrum. The likelihood computation is the most time-intensive component of the
pipeline, as it requires optimization over both m and ε. This step is performed with MLcalc as the
option, and once again five arguments in common with the previous steps:

python LASSI iterator.py MLcalc <chromosome number> <truncation>

<unique ID> <file name components> <study population> <out option>

5



The argument out option specifies the sweep model to be used in the scan, and is an integer
between 1 and 5. The difference between models, however slight, is their stringency in assigning
a candidate sweep as hard (m̂ = 1) or soft (m̂ > 1). Options 1 through 4 use a sweep distortion
model that unequally adds weight to the sweeping haplotype classes, whereas option 5 adds weight
equally to each. The options represent:

1. A model in which weight is added to sweeping classes proportional to 1/i, where i is the
haplotype class

2. A model in which weight is added to sweeping classes proportional to 1/i2

3. A model in which weight is added to sweeping classes proportional to e−i

4. A model in which weight is added to sweeping classes proportional to e−i2

5. A model in which weight is added to sweeping classes proportional to 1/m, where m is the
number of sweeping haplotype classes in the model

Options 1-4 are increasingly more likely to classify sweeps as soft, whereas option 5 is the least
likely to classify a sweep as soft. We have found that option 3 provides the greatest detective power
and most accurate classifications of sweeps in simulation experiments, though the difference across
all models is marginal. See Harris and DeGiorgio [2019b] for a more complete description of this
theory.

2.2 Converting VCF files to LASSI-compatible format with vcf2ssx

*We have reproduced this section of the LASSI manual from the equivalent section of our SS-X12

manual.*

Here, we describe the operation of vcf2ssx, a Python script which converts VCF files to compressed
files in LASSI format (as .txt.gz). LASSI is compatible with either compressed (must contain “.gz”
in the file name) or uncompressed input data files. Invoke vcf2ssx with the command

python vcf2ssx.py <vcf infile> <formatting> <nonbi removed>

[<chromosome index>] [<position index>] [<rsID index>] [<refAllele index>]

[<altAllele index>] [<data index>]

A minimum of three arguments is required, with six additional arguments depending on the choice
of formatting:

1. vcf infile, the name of the VCF file to be converted to LASSI format; for example
my data.vcf.gz (note that uncompressed VCFs are also compatible with vcf2ssx)

2. formatting, defines whether the order of columns in the VCF follows the standard VCFv4.2
format or not; answering yes indicates formatting following VCFv4.2, meaning that vcf2ssx
requires no further arguments; answering no subsequently requires the user to define the index
positions of important columns in the infile (see items 4-9)

6



3. nonbi removed, defines whether the user has removed all sites from their input VCF file that
are NOT biallelic SNPs; answering yes indicates that such sites are removed, while answering
no indicates that such sites are retained in the input (requiring vcf2ssx to filter these out)

4. chromosome index, optional argument if formatting is no, integer specifying the index of
the chromosome number column in the VCF input file (indexing begins from zero for this
and subsequent arguments)

5. position index, optional argument if formatting is no, integer specifying the index of the
physical position column in the VCF input file

6. rsID index, optional argument if formatting is no, integer specifying the index of the SNP
rsID column in the VCF input file

7. refAllele index, optional argument if formatting is no, integer specifying the index of the
reference allele column in the VCF input file

8. altAllele index, optional argument if formatting is no, integer specifying the index of the
alternate allele column in the VCF input file

9. data index, optional argument if formatting is no, integer specifying the first data column’s
index in the VCF input file

A complete command line invocation of vcf2ssx, with standard formatting of the VCF input file
and sites that are not biallelic SNPs removed, is:

python vcf2ssx.py my data.vcf.gz yes yes

3 Default input file format

*We have reproduced this section of the LASSI manual from the equivalent section of our SS-X12

manual.*

Here, we discuss the default format of the data file which LASSI takes as input, as well as the
headfile that must accompany the input data. The example data files included within the LASSI

directory are formatted according to our requirements.

The LASSI input data file is individual-delimited and contains data for all individuals from all
study populations, as only one data file is analyzed per run. Additionally, each input data file must
contain data from only one chromosome. Be sure to include hap at the end of the filename to
indicate phased haplotype data, or mlg to indicate unphased MLG data. We recommend running
analyses on multiple chromosomes in parallel with a multithreading or multiprocessing module
(such as parallel in R or multiprocessing in Python).

For S analyzed SNPs and n sampled diploid individuals, the input data file contains S lines of
data. Each line consists of summary information on the SNP—chromosome ID, SNP rsID, physical
position, reference allele, and alternate allele—followed by n entries corresponding to the allelic
state of each sampled individual at that SNP. Thus, data lines contain n + 5 entries. Each data
line should look as follows:

7



12 rs536857393 93597 C T 1 1 3 1 1 4 4 2 4 2

For phased haplotype data, an individual’s allelic state is coded as 1, 2, 3, or 4. States 1 and
4 correspond to homozygous genotypes for the reference (VCF format: 0|0) and alternate alleles
(1|1), respectively. States 2 and 3 correspond to heterozygous genotypes, where the alternate allele
is located on the second haplotype in state 2 (0|1) and on the first haplotype in state 3 (1|0). For
unphased diploid MLGs, states 2 and 3 are not included. Instead, an individual’s heterozygous
allelic state is 5 (1/0 or 0/1). Missing sites are encoded as the letter “N”, corresponding to each
instance of “.” in the VCF.

The headfile must contain a single line of n entries. Each entry is the name of a sampled
population, and this name must be invoked exactly within the study population argument (see
above). Population assignments are indexed to match the position of individuals in the input data
file, such that an entry at position p in the population header file is the population assignment of
the individual at position p+ 5 in the input data file. Note that only one population at a time can
be scanned with LASSI. The header line should look as follows (two populations, CEU and CHB
are included here; same example as above):

CEU CEU CEU CEU CEU CHB CHB CHB CHB CHB

Although our example here features only 10 individuals, with 5 from either population, we caution
that LASSI performs better for larger sample sizes. That is, the sample size needs to be sufficient for
the captured variation to properly distinguish between neutral and selected regions of the genome.
To make this determination, we recommend running LASSI on a few megabases (Mb) of your data
and observing the contrast in value between signal peaks and signal valleys. We also find that we
have more power to detect sweeps from phased haplotype data than from MLG data (for the same
number of individuals, the MLG sample size is half of the haploid sample size). Analyses in Harris
and DeGiorgio [2019b] feature samples of 100 diploids per population.

4 Output format

The LASSI pipeline yields various output files (uncompressed, plain text, .txt) as the analysis
progresses, and these can be divided into three categories: spectra, window centers, and sweep scan
files. Files are of length equal to the number of analysis windows in the data file. We will devote
the most attention to the format of sweep scan files due to their somewhat less intuitive structure,
though we emphasize that all output files are easy to parse.

Spectrum files can be either frequencies or counts, as well as whole or truncated. Thus, each
chromosome that is analyzed has four associated spectra (not counting the allreps file, which
covers all chromosomes). Spectra are arranged in decreasing size of class, such that the largest
class is first, and smallest is last. The same line across each file corresponds to the same analysis
window, meaning that, for example, the 150th line in the truncated frequency spectrum derives
from the same analysis window as the 150th line in the whole counts spectrum. The sum of all
classes for each line (window) of the frequency spectrum files is 1, and the sum of all classes for

8



each line of the counts spectrum files is equal to the diploid sample size for the population. For
truncated spectra, the values of each class are weighted to ensure correct values. For the initial

run of LASSI, a window centers file is generated along with the four spectra that also corresponds
to them, line-for-line, indicating the nucleotide coordinate of the center of the analysis window, as
defined by the input file (the coordinate is the only element of each line).

Each output line of the sweep scan file generated with MLcalc is space-separated, with six elements
per line. Once again, each line in the output derives from the same analysis window as in the
spectrum files. A LASSI output line consists of the following:

• T statistic, a measure of the support for a selective sweep at the analysis window, with larger
values indicating greater support for a sweep

• m̂, the inferred number of sweeping classes in the population, based on the optimal sweep
model

• ε̂, the most optimal inferred frequency of the least frequent class

• pK , the value of the smallest frequency class in the neutral background spectrum; the combi-
nation of pK and ε defines the values of the non-sweeping frequency classes under the sweep
model; this is set by default to be the value of the largest non-sweeping frequency class

• Likelihood model choice, integer numbered 1-5, corresponding to the selections enumerated
in Section 2.1.3

• Coordinate of analysis window center, in nucleotides

5 Examples

In the examples directory within LASSI, we provide compressed example data in both LASSI format
and as VCF, as well as example output files. Data come from Phase 3 of the 1000 Genomes Project
[Auton et al., 2015]. The included data consist of the headfile for the 2,504 sequenced individuals
within the 1000 Genomes Project dataset, the first 1000 SNPs of chromosome 12 from the 1000
Genomes Project (as .vcf.gz, .txt.gz, and .txt), and the output files for each stage of the LASSI
pipeline from the scan of chr12 first1000 hap.txt.gz. Each stage of output has been manually
placed in a directory named according to the option. We analyzed the YRI population for these
examples.

The commands required to generate the example output files are:

• python vcf2ssx.py chr12 first1000 hap.vcf.gz yes yes

This converts the .vcf.gz file to a .txt.gz file; note that the VCF file is not required to
have hap or mlg in the filename at this stage.

• python LASSI iterator.py initial 12 15 LASSI EXAMPLE chr, first1000 hap.txt.gz

CEU 1000genomes phase3 head.txt 117 12 yes

Command to generate the spectra for CEU chromosome 12, using a truncation of K = 15,

9



unique ID of LASSI EXAMPLE, window size of 117 SNPs, step size of 12 SNPs, and truncated
frequency spectrum output additionally redirected to an allreps file. Output consists of six
files: four standard spectra ( count Uhap, count Khap, spectrum Uhap, spectrum Khap),
the allreps file (identical to spectrum Khap for this example due to the absence of other
parallel scans), and a window centers file.

• python LASSI iterator.py rescan 12 20 LASSI EXAMPLE chr, first1000 hap.txt.gz

CEU 1000genomes phase3 head.txt 117 12 yes

Performs a truncation of count Uhap and spectrum Uhap from the previous command to
output new truncated files (K = 20) and new allreps file.

• python LASSI iterator.py neutavg 12 20 LASSI EXAMPLE chr, first1000 hap.txt.gz

CEU 3

This command reads in the K = 20 allreps file from the previous command and takes
the average of each haplotype frequency class across all windows to generate the neutral
background frequency spectrum, total neutral (note once again that you will need to
determine the number of lines within your allreps file and use this as the final argument).

• python LASSI iterator.py MLcalc 12 20 LASSI EXAMPLE chr, first1000 hap.txt.gz

CEU 3

Using the total neutral and count Khap files, a T statistic is assigned to each win-
dow of the K = 20 scan, using likelihood model 3. The single output file is called
LASSI EXAMPLE K20 chr1hap.txt

10



References

A Auton, G R Abecasis, and The 1000 Genomes Project Consortium. A global reference for human
genetic variation. Nature, 526:68–74, 2015.

A M Harris and M DeGiorgio. Identifying and classifying shared selective sweeps from multilocus
data. bioRxiv, 2019a.

A M Harris and M DeGiorgio. A likelihood approach for uncovering selective sweep signatures from
haplotype data. bioRxiv, 2019b.

11


	Introduction
	Operation
	Running LASSI from the command line
	Initial scan of the data to generate frequency spectra and count spectra
	Obtaining the mean neutral spectrum
	Running the final scan to compute the T statistic

	Converting VCF files to LASSI-compatible format with vcf2ssx

	Default input file format
	Output format
	Examples

